棋牌游戏下载-凯特棋牌手机版

當前位置: > 學術報告 > 理科 > 正文

理科

計算機科學學院七十周年校慶系列學術報告--On Redundant Topological Constraints

發(fā)布時間:2014-10-09 瀏覽:

講座題目:計算機科學學院七十周年校慶系列學術報告--On Redundant Topological Constraints

講座人:李三江 教授

講座時間:15:00

講座日期:2014-9-30

地點:長安校區(qū) 計算機科學學院學術報告廳

主辦單位:計算機科學學院

講座內容:The Region Connection Calculus (RCC) isa well-known calculus for representing part-whole and topological relations. Itplays an important role in qualitative spatial reasoning, geographical information science, and ontology. The computational complexity of reasoning with RCC has been investigated in depth in the literature. Most of these works focus on the consistency of RCC constraint networks. In this talk, we considerthe important problem of redundant RCC constraints. For a set N of RCC constraints, we say a constraint (x R y) in N is redundant if it can be entailed by the rest of N, i.e., removing (x R y) from N will not change the solution set of N. A prime subnetwork of N is a subset of N which contains no redundant constraints but has the same solution set as N. It is natural to ask how to compute such a prime subnetwork, and when it is unique. In this talk, we show that this problem is in general intractable, but becomes tractable if N isover a tractable subclass S of RCC. If S is a tractable subclass in which weak composition distributes over non-empty intersections, then we can further show that N has a unique prime subnetwork, which is obtained by removing all redundant constraints simultaneously from N. As a byproduct, we identifya sufficient condition for a path-consistent network being minimal.

东兰县| 百家乐屏风| 百家乐官网国际娱乐| 24山安葬吉凶择日| 大发888 加速器| 百家乐官网平玩法这样| 现金网注册| 不规则地形做生意风水好吗| 电子百家乐| 百家乐英皇娱乐城| 百家乐官网代理占成| 百家乐登封代理| 榕江县| 澳门百家乐游戏说明书| 百家乐官网风云论坛| 百家乐园36bol在线| 百家乐官网和抽水官网| 威尼斯人娱乐欢迎您| 百家乐游戏官网| 百家乐官网真钱牌九| 百家乐任你博娱乐平台| 现场百家乐官网牌路分析| 大发888明星婚讯| 百家乐越长的路| 百家乐官网英皇赌场娱乐网规则 | 百家乐官网境外赌博| 网上赌百家乐的玩法技巧和规则 | 威尼斯人娱乐城求助| 巴比伦百家乐官网的玩法技巧和规则| 一起pk棋牌游戏下载| 百家乐园百利宫娱乐城怎么样百家乐园百利宫娱乐城如何 | 现金百家乐官网信誉| 边城棋牌中心| 百家乐画面| 百家乐官网平的概率| 澳门百家乐| 大发888娱乐场备用| 澳门百家乐大小| 罗盘24山作用| 百家乐官网娱乐网送68元| 大发888bet娱乐城|