棋牌游戏下载-凯特棋牌手机版

當前位置: > 學術報告 > 理科 > 正文

理科

計算機科學學院學術講座--Integrablepeakon and cuspon equations

發布時間:2015-06-08 瀏覽:

講座題目:計算機科學學院學術講座--Integrablepeakon and cuspon equations

講座人:喬志軍 教授

講座時間:09:00

講座日期:2015-6-6

地點:長安校區 文津樓三段612室

主辦單位:計算機科學學院

講座內容:In my talk, I will introduce integrablepeakon and cuspon equations and present a basic approach how to get peakon solutions. Those equations include the well-known Camassa-Holm (CH), the Degasperis-Procesi (DP), and other new peakon equations with M/W-shape soutions. I take the CH case as a typical example to explain the details. My presentation is based on my previous work (Communications in Mathematical Physics 239, 309-341). I will show that the Camassa-Holm (CH) spectral problem yields two different integrable hierarchies of nonlinear evolution equations (NLEEs), one is of negative order CH hierachy while the other one is of positive order CH hierarchy. The two CH hierarchies possess the zero curvature representations through solving a key matrix equation. We see that the well-known CH equation is included in the negative order CH hierarchy while the Dym type equation is included in the positive order CH hierarchy. In particular, the CH equation, constrained to a symplecticsubmanifold in R^2N, has the parametric solutions. Moreover, solving the parametric representation of the solution on the symplecticsubmanifold gives a class of a new algebro-geometric solution of the CH equation. In the end of my talk, some open problems are also addressed for discussion.

送现金百家乐官网的玩法技巧和规则| 百家乐官网真钱路怎么看| 赌场百家乐破解| 百家乐娱乐平台真人娱乐平台| 龙口市| 百家乐神仙道官网| 总统娱乐城能赢钱吗| 百家乐官网是如何出千的| 博彩百家乐五2013124预测| 乐百家百家乐官网游戏| 百家乐五湖四海娱乐场| 冠军百家乐官网现金网| 作弊百家乐赌具价格| 香港百家乐官网赌城| 大发888真人官网| 诺贝尔百家乐官网的玩法技巧和规则| 百家乐官网实时赌博| 大发888注册bet| 百家乐官网棋牌外挂| 百家乐官网平预测软件| 马牌娱乐城| 百家乐赌场破解| 哪个百家乐官网玩法平台信誉好| 大发888娱乐城 真钱bt| 百家乐游戏必赢法| 百家乐官网去哪里玩最好| 博必发百家乐的玩法技巧和规则 | 百家乐发牌靴遥控| 真人百家乐官网蓝盾娱乐平台| 娱乐场游戏| 24山水口决阳宅| 百家乐官网真人秀| 信誉棋牌游戏| 实战百家乐十大取胜原因百分百战胜百家乐不买币不吹牛只你能做到按我说的.百家乐基本规则 | 沙龙百家乐娱乐场| 百家乐官网软件l柳州| 大发888大家赢娱乐| 皇冠网百家乐官网平台| 大发888扑克合营商| 玩百家乐如何硬| 罗盘24山珠宝火坑|