棋牌游戏下载-凯特棋牌手机版

當(dāng)前位置: > 學(xué)術(shù)報(bào)告 > 理科 > 正文

理科

Reachability in Fuzzy Game Graphs

發(fā)布時(shí)間:2021-09-15 瀏覽:


報(bào)告題目:Reachability in Fuzzy Game Graphs

報(bào)告人: 潘海玉

講座日期:2021-9-17

講座時(shí)間15:00

報(bào)告地點(diǎn):騰訊會(huì)議ID121181901

主辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院

講座人簡(jiǎn)介 潘海玉,桂林電子科技大學(xué)副教授,碩士生導(dǎo)師。2009年畢業(yè)于浙江理工大學(xué),獲得工學(xué)碩士學(xué)位;2012畢業(yè)于華東師范大學(xué),獲得博士學(xué)位;2013-2017年在陜西師范大學(xué)博士后流動(dòng)站工作。 現(xiàn)任中國(guó)計(jì)算機(jī)學(xué)會(huì)理論計(jì)算機(jī)專委會(huì)執(zhí)行委員、中國(guó)計(jì)算機(jī)學(xué)會(huì)形式化方法專委會(huì)執(zhí)行委員、中國(guó)人工智能學(xué)會(huì)離散智能計(jì)算專委會(huì)委員、中國(guó)邏輯學(xué)會(huì)非經(jīng)典邏輯與計(jì)算專委會(huì)委員和中國(guó)系統(tǒng)工程學(xué)會(huì)模糊數(shù)學(xué)與模糊系統(tǒng)專委會(huì)委員。研究方向?yàn)樾问交椒ā⒛:壿嫛X?fù)責(zé)主持國(guó)家自然科學(xué)基金面上項(xiàng)目、國(guó)家自然科學(xué)基金地區(qū)項(xiàng)目、中國(guó)博士后基金、廣西自然科學(xué)基金面上項(xiàng)目、廣西可信軟件重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金。以第一作者身份在IEEE Transactions on Fuzzy SystemsFuzzy Sets and SystemsInternational Journal of Approximate ReasoningTheoretical Computer ScienceFundamenta Informaticae等國(guó)內(nèi)外重要學(xué)術(shù)刊物和國(guó)際會(huì)議發(fā)表論文20余篇,其中中國(guó)計(jì)算機(jī)學(xué)會(huì)推薦國(guó)際學(xué)術(shù)刊物上發(fā)表文章9篇。

講座簡(jiǎn)介

Two-player turn-based games on graphs (or game graphs for short) and their probabilistic versions have received increasing attention in computer science, especially in the formal verification of reactive systems. However, in the fuzzy setting game graphs are yet to be addressed, although some practical applications, such as modeling fuzzy systems that interact with their environments, appeal to such models. To fill the gap, in this report we propose a fuzzy version of game graphs and focus on the fuzzy game graphs with reachability objectives, which we will refer to as fuzzy reachability games (FRGs). In an FRG, the goal of one player is to maximize her truth value of reaching a given target set, while the other player aims at the opposite. In this framework, we show that FRGs are determined in the sense that for every state, both of the two players have the same value, and there exist optimal memoryless strategies for both players. Moreover, we design algorithms, which achieve polynomial time-complexity in the size of the FRG, to compute the values of all states and the optimal memoryless strategies for the players. In addition, several examples are given to illustrate our motivation and the theoretical development.


 

大发888国际娱乐城| 大西洋百家乐官网的玩法技巧和规则| 全讯网3344111| 大发888下载官方| 大发888娱乐场下载地址| 百家乐官网游戏解密| 百家乐赌术揭秘| 菲律宾太阳城88| 百家乐官网怎么玩了| 百家乐分析软件骗人| 百家乐官网路单破解软件| 网络百家乐软件真假| 宁蒗| 百家乐官网任你博娱乐场| 百家乐庄闲赢负表| 百家乐官网下注口诀| 百家乐官网稳赢玩法| 澳门百家乐规则视频| 兰考县| 百家乐庄家闲| 百家乐官网7赢6| 二八杠分析仪| 送彩金百家乐官网平台| 洛克百家乐的玩法技巧和规则 | 网络百家乐官网路子玩| 大发888娱乐城casino| 百家乐作弊视频| 百家乐官网出千技巧| 怎么看百家乐的路| 百家乐官网出千的方法| 澳门顶级赌场百家乐| 大发888娱乐客户端| 百家乐官网用品| 星河国际娱乐场| 百家乐扑克桌| 百家乐官网规则博彩正网| pc百家乐官网模拟游戏| 同乐城备用网| e世博百家乐攻略| 百家乐官网庄闲的几率| 皇冠足球投注网|