棋牌游戏下载-凯特棋牌手机版

當(dāng)前位置: > 學(xué)術(shù)報(bào)告 > 理科 > 正文

理科

Reachability in Fuzzy Game Graphs

發(fā)布時(shí)間:2021-09-15 瀏覽:


報(bào)告題目:Reachability in Fuzzy Game Graphs

報(bào)告人: 潘海玉

講座日期:2021-9-17

講座時(shí)間15:00

報(bào)告地點(diǎn):騰訊會(huì)議ID121181901

主辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院

講座人簡(jiǎn)介 潘海玉,桂林電子科技大學(xué)副教授,碩士生導(dǎo)師。2009年畢業(yè)于浙江理工大學(xué),獲得工學(xué)碩士學(xué)位;2012畢業(yè)于華東師范大學(xué),獲得博士學(xué)位;2013-2017年在陜西師范大學(xué)博士后流動(dòng)站工作。 現(xiàn)任中國(guó)計(jì)算機(jī)學(xué)會(huì)理論計(jì)算機(jī)專委會(huì)執(zhí)行委員、中國(guó)計(jì)算機(jī)學(xué)會(huì)形式化方法專委會(huì)執(zhí)行委員、中國(guó)人工智能學(xué)會(huì)離散智能計(jì)算專委會(huì)委員、中國(guó)邏輯學(xué)會(huì)非經(jīng)典邏輯與計(jì)算專委會(huì)委員和中國(guó)系統(tǒng)工程學(xué)會(huì)模糊數(shù)學(xué)與模糊系統(tǒng)專委會(huì)委員。研究方向?yàn)樾问交椒ā⒛:壿嫛X?fù)責(zé)主持國(guó)家自然科學(xué)基金面上項(xiàng)目、國(guó)家自然科學(xué)基金地區(qū)項(xiàng)目、中國(guó)博士后基金、廣西自然科學(xué)基金面上項(xiàng)目、廣西可信軟件重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金。以第一作者身份在IEEE Transactions on Fuzzy SystemsFuzzy Sets and SystemsInternational Journal of Approximate ReasoningTheoretical Computer ScienceFundamenta Informaticae等國(guó)內(nèi)外重要學(xué)術(shù)刊物和國(guó)際會(huì)議發(fā)表論文20余篇,其中中國(guó)計(jì)算機(jī)學(xué)會(huì)推薦國(guó)際學(xué)術(shù)刊物上發(fā)表文章9篇。

講座簡(jiǎn)介

Two-player turn-based games on graphs (or game graphs for short) and their probabilistic versions have received increasing attention in computer science, especially in the formal verification of reactive systems. However, in the fuzzy setting game graphs are yet to be addressed, although some practical applications, such as modeling fuzzy systems that interact with their environments, appeal to such models. To fill the gap, in this report we propose a fuzzy version of game graphs and focus on the fuzzy game graphs with reachability objectives, which we will refer to as fuzzy reachability games (FRGs). In an FRG, the goal of one player is to maximize her truth value of reaching a given target set, while the other player aims at the opposite. In this framework, we show that FRGs are determined in the sense that for every state, both of the two players have the same value, and there exist optimal memoryless strategies for both players. Moreover, we design algorithms, which achieve polynomial time-complexity in the size of the FRG, to compute the values of all states and the optimal memoryless strategies for the players. In addition, several examples are given to illustrate our motivation and the theoretical development.


 

哈尔滨市| 大发888 迅雷快传| 百家乐官网赢家电子书| 百家乐娱乐真人娱乐| 百家乐系统分析器| 百盛百家乐软件| 大发888我发财| 百家乐翻天快播| 健康| 大发888娱乐场下载dafaylcdown| 筹码百家乐官网的玩法技巧和规则| 六合彩官方网| 百家乐娱乐城体育| 澳门百家乐官网实战视频| 白凤凰博彩通| 大众百家乐娱乐城| 百家乐官网已破解的书籍| 谈谈百家乐赢钱技巧| 百家乐官网赢钱公式1| 百家乐双峰县| 首席百家乐官网的玩法技巧和规则| 百家乐官网看炉子的方法| 姚记娱乐城官网| 大发888游戏平台hana| 百家乐baccarat| 百家乐tt娱乐城娱乐城| 百家乐经典路单| 大荔县| 大发888方官下载| 大发888怎么下载安装| 百家乐永利娱乐网| 合肥百家乐赌博机| 百家乐官网书包| 太阳城百家乐官网投注| 嘉祥县| 百家乐官网椅子| 博彩e族首页| 水果机技巧| 百家乐数据程序| 百家乐官网筹码方形| 百家乐官网靠什么赢|