棋牌游戏下载-凯特棋牌手机版

當(dāng)前位置: > 學(xué)術(shù)報(bào)告 > 理科 > 正文

理科

Reachability in Fuzzy Game Graphs

發(fā)布時(shí)間:2021-09-15 瀏覽:


報(bào)告題目:Reachability in Fuzzy Game Graphs

報(bào)告人: 潘海玉

講座日期:2021-9-17

講座時(shí)間15:00

報(bào)告地點(diǎn):騰訊會(huì)議ID121181901

主辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院

講座人簡(jiǎn)介 潘海玉,桂林電子科技大學(xué)副教授,碩士生導(dǎo)師。2009年畢業(yè)于浙江理工大學(xué),獲得工學(xué)碩士學(xué)位;2012畢業(yè)于華東師范大學(xué),獲得博士學(xué)位;2013-2017年在陜西師范大學(xué)博士后流動(dòng)站工作。 現(xiàn)任中國(guó)計(jì)算機(jī)學(xué)會(huì)理論計(jì)算機(jī)專委會(huì)執(zhí)行委員、中國(guó)計(jì)算機(jī)學(xué)會(huì)形式化方法專委會(huì)執(zhí)行委員、中國(guó)人工智能學(xué)會(huì)離散智能計(jì)算專委會(huì)委員、中國(guó)邏輯學(xué)會(huì)非經(jīng)典邏輯與計(jì)算專委會(huì)委員和中國(guó)系統(tǒng)工程學(xué)會(huì)模糊數(shù)學(xué)與模糊系統(tǒng)專委會(huì)委員。研究方向?yàn)樾问交椒ā⒛:壿嫛X?fù)責(zé)主持國(guó)家自然科學(xué)基金面上項(xiàng)目、國(guó)家自然科學(xué)基金地區(qū)項(xiàng)目、中國(guó)博士后基金、廣西自然科學(xué)基金面上項(xiàng)目、廣西可信軟件重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金。以第一作者身份在IEEE Transactions on Fuzzy SystemsFuzzy Sets and SystemsInternational Journal of Approximate ReasoningTheoretical Computer ScienceFundamenta Informaticae等國(guó)內(nèi)外重要學(xué)術(shù)刊物和國(guó)際會(huì)議發(fā)表論文20余篇,其中中國(guó)計(jì)算機(jī)學(xué)會(huì)推薦國(guó)際學(xué)術(shù)刊物上發(fā)表文章9篇。

講座簡(jiǎn)介

Two-player turn-based games on graphs (or game graphs for short) and their probabilistic versions have received increasing attention in computer science, especially in the formal verification of reactive systems. However, in the fuzzy setting game graphs are yet to be addressed, although some practical applications, such as modeling fuzzy systems that interact with their environments, appeal to such models. To fill the gap, in this report we propose a fuzzy version of game graphs and focus on the fuzzy game graphs with reachability objectives, which we will refer to as fuzzy reachability games (FRGs). In an FRG, the goal of one player is to maximize her truth value of reaching a given target set, while the other player aims at the opposite. In this framework, we show that FRGs are determined in the sense that for every state, both of the two players have the same value, and there exist optimal memoryless strategies for both players. Moreover, we design algorithms, which achieve polynomial time-complexity in the size of the FRG, to compute the values of all states and the optimal memoryless strategies for the players. In addition, several examples are given to illustrate our motivation and the theoretical development.


 

波克棋牌官方下载| 皇冠网址| 玩百家乐官网秘诀| 大发888娱乐城加速器| 大发888娱乐场网址| 百家乐官网稳赢赌法| 百家乐官网翻天粤qvod| 皇城百家乐官网娱乐城| 威斯汀百家乐的玩法技巧和规则| 至尊国际娱乐| 百家乐官网的桌子| 大发888娱乐备用网址| 亚洲百家乐官网的玩法技巧和规则| 百家乐赌博代理合作| 网狐棋牌源码| 新百家乐官网的玩法技巧和规则 | 百家乐官网专用台布| 百家乐币| 利来博彩通| 我的做生意财位| 威尼斯人娱乐场地址| 百家乐官网赌博破解| 威尼斯人娱乐骰宝| 墓地附近做生意风水| 新安县| 百家乐怎样玩才能赢| 百乐彩| 百家乐下注法| 真人百家乐官网游戏网址| 大发888xp缺少 casino| 百家乐玩法既规则| 百家乐官网辅助工具| 香港百家乐六合彩| 网上百家乐官网作弊不| 做生意看风水| 百家乐官网9人桌布| 菲律宾豪门娱乐| 水果机价格| 做生意的风水朝向| 百乐坊百家乐官网娱乐城| 百家乐太阳城|