棋牌游戏下载-凯特棋牌手机版

當前位置: > 學術報告 > 理科 > 正文

理科

Fuzzy Discrete Event Systems with Online Supervised Learning Capability

發布時間:2021-09-15 瀏覽:

報告題目:Fuzzy Discrete Event Systems with Online Supervised Learning Capability

報告人:  Hao Ying

講座日期:2021-9-17

講座時間:9:30

報告地點:騰訊會議ID882140799

主辦單位:數學與統計學院

講座人簡介:Professor Hao Ying has published two fuzzy control books, 126 journal papers, and 160 conference papers. He is ranked among top 25% of the 100,000 most-cited authors across all 22 scientific fields (176 subfields) which are selected from nearly 7 million scientists worldwide. He is serving as an Associate Editor or a Member of Editorial Board for 13 international journals, including the IEEE Transactions on Fuzzy Systems and the IEEE Transactions on Systems, Man, and Cybernetics: Systems. He served as a Member of Fellows Committee of both the IEEE Computational Intelligence Society (2020 and 2021) and the IEEE Systems, Man, and Cybernetics Society (2016, 2017, 2020).

講座簡介:

To effectively represent deterministic uncertainties and vagueness as well as human subjective observation and judgment encountered in many real-world problems especially those in medicine, we recently originated a theory of fuzzy discrete event systems (DES). The theory is unique in that it is capable of modeling a class of event-driven systems as fuzzy automata with states and event-invoked state transitions being ambiguous. We introduced fuzzy states and fuzzy event transition and generalized conventional crisp DES to fuzzy DES. The largely graph-based framework of the crisp DES was unsuitable for the expansion and we thus reformulated it using state vectors and event transition matrices which could be extended to fuzzy vectors and matrices by allowing their elements to take values in [0, 1]. We also extended optimal control of DES to fuzzy DES. This novel fuzzy DES theory is consistent with the traditional DES theory, both at conceptual and computation levels, in that the former contains the latter as a special case when the membership grades are either 0 or 1.

We further developed the FDES theory so that it possessed self-learning capability. More specifically, we use stochastic gradient descent to develop online learning algorithms for the fuzzy automata (i.e., learning the event transition matrix from data). We uncover an inherent obstacle in the initial derived algorithms that fundamentally restricts their learning capability owing to dependences of the model parameters to be learned. We develop a novel mechanism to not only overcome the obstacle but also make the learning adaptive. Our final algorithms can (1) learn an event transition matrix based on automaton’s states before and after the occurrence of a fuzzy event, and (2) learn the transition matrix and multi-dimensional Gaussian fuzzy sets yielding automaton’s pre-event states from relevant input (physical) variables and target states. Computer simulation results are presented to show learning performance of the final algorithms.

大发888怎么开户| 百家乐游戏平台架设| 立博| 自贡百家乐官网赌场| 顶尖百家乐的玩法技巧和规则| 东乡| 网上百家乐官网是不是真的| 大发888游戏平台 黄埔网| pc百家乐官网模拟游戏| 大发888娱乐城赢钱| 皇冠国际足球| 网络百家乐的信誉| 百家乐官网游戏如何玩| 百家乐也能赢钱么| 晋州市| 送58百家乐的玩法技巧和规则 | 百家乐官网tt娱乐城娱乐城| 二八杠技术| 在线玩百家乐官网的玩法技巧和规则 | 大发888 m摩卡游戏| 大西洋百家乐官网的玩法技巧和规则 | 皇冠娱乐| 百家乐真钱电玩| 百家乐官网案件讯问| 粤港澳百家乐娱乐网| 迪威百家乐官网赌场娱乐网规则 | 澳门百家乐官网博牌| 大发888娱乐城官方下载| 百家乐的保单打法| 任我赢百家乐官网自动投注系统| 上海博彩生物科技有限公司| 新百家乐庄闲路单图记录| 百家乐官网赌场走势图| 六合彩教程| 网上有百家乐玩吗| 百家乐官网代理合作| 视频百家乐官网信誉| 八大胜博彩| 大发888官方网站登录| 蓝盾百家乐官网庄家利润分| 龙里县|