棋牌游戏下载-凯特棋牌手机版

當前位置: > 學術報告 > 理科 > 正文

理科

數學與信息科學學院系列學術報告

發布時間:2020-11-27 瀏覽:

 報告人: 王顯金教授,侯國林教授

講座日期:2020-12-02

講座時間:14:40

報告地點:騰訊會議(ID673 847 466

主辦單位:數學與信息科學學院

 

報告題目1 On fibred coarse embedding of box type spaces

報告人: 王顯金教授

講座時間:14:40

講座人簡介:

王顯金,重慶大學博士生導師,2008年畢業于復旦大學,獲得博士學位。主要研究泛函分析、非交換幾何方面問題,目前主持國家自然科學基金面上項目一項。在Adv. Math.J. Funct. Anal.Israel J. Math.Bull. Lond. Math. Soc.等雜志發表多篇文章。

講座簡介:

In this talk, we introduce a new concept almost fibred coarse embeddability for metric spaces which is a generalization of fibred coarse embeddability given by X. Chen, Q. Wang and G. Yu. Then we show that the sofic approximation of a finitely generated discrete group is almost fibred coarse embeddable into some uniformly convex Banach space if and only if the group admits a proper affine isometric action on some uniformly convex Banach space.

 

報告題目2Some theoretical and applied research on the completeness of generalized eigenvectors of unbounded Hamiltonian operators.

報告人: 侯國林教授

講座時間:16:00

講座人簡介:

侯國林,內蒙古大學 教授,博導。主要側重于探討源于實際問題的線性算子及分塊算子矩陣的譜理論,特別是非自伴算子,如: 無界Hamilton算子,并注重相關理論研究在工程力學等實際問題中的應用。主持在研1項國家自然科學基金項目,主持完成1項國家自然科學基金項目,連續主持3項內蒙古自然科學基金項目,并入選2015年度內蒙古自治區高等學校青年科技英才計劃。2017年獲內蒙古自治區青年科技獎,同年獲內蒙古自治區優秀科技工作者稱號。以第一作者或通訊作者在Journal of Computational and Applied MathematicsApplied Mathematical ModellingLinear Algebra and its ApplicationsApplied Mathematics and ComputationThe European Physical Journal PlusActa Mathematica Sinica (English Series)Science China Physics-Mechanics & AstronomyApplied Mathematics and Mechanics (English Edition)Chinese Physics BCommunications in Theoretical Physics,《中國科學:數學》,《數學學報》,《系統科學與數學》,《力學學報》,《固體力學學報》等數學、物理和力學方面的期刊上發表學術論文。

講座簡介:

The unbounded Hamiltonian operators are a kind of non-selfadjoint operator matrices, which have important applications in the field of continuum mechanics, infinite dimensional linear systems, and optimal control and so on. In order to solve applied mechanics problems rationally, Prof. Wanxie Zhong proposed a new systematical methodology of theory of elasticity (also called the symplectic elasticity approach). The symplectic approach provides a new idea for the development of applied mathematics in China. Its essence is the method of separation of variables based on Hamiltonian systems, and the corresponding mathematical basis is the completeness of the generalized eigenvector system of unbounded Hamiltonian operators. In this talk, we briefly introduces the results on the completeness of the generalized eigenvectors of unbounded Hamiltonian operators from both the theoretical aspect and mechanical application.

 

 

 

 

 

 

 

大发888真钱娱乐 博彩| 百家乐官网投注方法多不多| 澳门百家乐备用网址| 德州扑克游戏大厅| 至尊百家乐官网赌场娱乐网规则| 同乐城百家乐娱乐城| 百家乐凯时娱乐场| 网上百家乐如何作假| 百家乐的赚钱原理| 大发888存款| 百家乐官网赌博技巧大全| 巴比伦百家乐官网娱乐城| 德州扑克怎么算牌| 香港百家乐官网玩| 实战百家乐十大取胜原因百分百战胜百家乐不买币不吹牛只你能做到按我说的.百家乐基本规则 | 平陆县| 苹果百家乐官网的玩法技巧和规则 | 香港百家乐官网马书| 太阳城集团| 喜达百家乐官网的玩法技巧和规则 | 百家乐平预测软件| 百家乐官网博欲乐城| 云博备用网址| 百家乐官网路单破| 百家乐官网纸牌赌博| 合乐娱乐| 百家乐视频画面| 百家乐的必胜方法| 百家乐官网新注册送彩金| 全讯网365| 百家乐官网实时赌博| 赌博粉| 威尼斯人娱乐城网站| 连环百家乐官网的玩法技巧和规则| 三易博娱乐城| 威尼斯人娱乐网上百家乐的玩法技巧和规则 | 巴西百家乐官网的玩法技巧和规则 | 大发888娱乐场下| tt百家乐官网的玩法技巧和规则| 爱博彩到天上人间| 百家乐输惨了|