棋牌游戏下载-凯特棋牌手机版

當前位置: > 學術報告 > 理科 > 正文

理科

數學與信息科學學院系列學術報告

發布時間:2020-11-27 瀏覽:

 報告人: 王顯金教授,侯國林教授

講座日期:2020-12-02

講座時間:14:40

報告地點:騰訊會議(ID673 847 466

主辦單位:數學與信息科學學院

 

報告題目1 On fibred coarse embedding of box type spaces

報告人: 王顯金教授

講座時間:14:40

講座人簡介:

王顯金,重慶大學博士生導師,2008年畢業于復旦大學,獲得博士學位。主要研究泛函分析、非交換幾何方面問題,目前主持國家自然科學基金面上項目一項。在Adv. Math.J. Funct. Anal.Israel J. Math.Bull. Lond. Math. Soc.等雜志發表多篇文章。

講座簡介:

In this talk, we introduce a new concept almost fibred coarse embeddability for metric spaces which is a generalization of fibred coarse embeddability given by X. Chen, Q. Wang and G. Yu. Then we show that the sofic approximation of a finitely generated discrete group is almost fibred coarse embeddable into some uniformly convex Banach space if and only if the group admits a proper affine isometric action on some uniformly convex Banach space.

 

報告題目2Some theoretical and applied research on the completeness of generalized eigenvectors of unbounded Hamiltonian operators.

報告人: 侯國林教授

講座時間:16:00

講座人簡介:

侯國林,內蒙古大學 教授,博導。主要側重于探討源于實際問題的線性算子及分塊算子矩陣的譜理論,特別是非自伴算子,如: 無界Hamilton算子,并注重相關理論研究在工程力學等實際問題中的應用。主持在研1項國家自然科學基金項目,主持完成1項國家自然科學基金項目,連續主持3項內蒙古自然科學基金項目,并入選2015年度內蒙古自治區高等學校青年科技英才計劃。2017年獲內蒙古自治區青年科技獎,同年獲內蒙古自治區優秀科技工作者稱號。以第一作者或通訊作者在Journal of Computational and Applied MathematicsApplied Mathematical ModellingLinear Algebra and its ApplicationsApplied Mathematics and ComputationThe European Physical Journal PlusActa Mathematica Sinica (English Series)Science China Physics-Mechanics & AstronomyApplied Mathematics and Mechanics (English Edition)Chinese Physics BCommunications in Theoretical Physics,《中國科學:數學》,《數學學報》,《系統科學與數學》,《力學學報》,《固體力學學報》等數學、物理和力學方面的期刊上發表學術論文。

講座簡介:

The unbounded Hamiltonian operators are a kind of non-selfadjoint operator matrices, which have important applications in the field of continuum mechanics, infinite dimensional linear systems, and optimal control and so on. In order to solve applied mechanics problems rationally, Prof. Wanxie Zhong proposed a new systematical methodology of theory of elasticity (also called the symplectic elasticity approach). The symplectic approach provides a new idea for the development of applied mathematics in China. Its essence is the method of separation of variables based on Hamiltonian systems, and the corresponding mathematical basis is the completeness of the generalized eigenvector system of unbounded Hamiltonian operators. In this talk, we briefly introduces the results on the completeness of the generalized eigenvectors of unbounded Hamiltonian operators from both the theoretical aspect and mechanical application.

 

 

 

 

 

 

 

网上百家乐游戏下载| 大发888游戏代冲省钱技巧| 百家乐官网怎么稳赢| 国际娱百家乐的玩法技巧和规则 | 皇冠百家乐的玩法技巧和规则| 武汉百家乐官网赌具| bet365合作计划| 定安县| 真人游戏排行榜| 合肥百家乐赌博游戏机| 百家乐官网自动下注| 博彩业| 汇丰百家乐的玩法技巧和规则| 伯爵百家乐官网娱乐场| 青海省| 大发888备用地址| 米其林百家乐的玩法技巧和规则 | 百家乐官网投注怎么样| 百家乐有方法赚反水| 赌百家乐官网波音备用网| 优博百家乐yobo88| 德州百家乐官网21点桌| 百家乐官网投注平台信誉排行 | 百家乐官网超级市场| 太阳城网上版| 百家乐电脑上怎么赌| 免费百家乐官网的玩法技巧和规则 | 棋牌游戏易发| LV百家乐客户端LV| 皇室百家乐官网的玩法技巧和规则| 舒城县| 南通棋牌游戏中心下载| 碧桂园太阳城二手房| 赌百家乐的玩法技巧和规则| 百家乐技巧何为百家乐之路| 金界百家乐官网的玩法技巧和规则| 百家乐官网遥控洗牌器| 天堂鸟百家乐的玩法技巧和规则 | 月华百家乐官网的玩法技巧和规则| 至尊百家乐官网娱乐平台| 百家乐官网庄闲的比例|