報告人: 王顯金教授,侯國林教授
講座日期:2020-12-02
講座時間:14:40
報告地點:騰訊會議(ID:673 847 466)
主辦單位:數學與信息科學學院
報告題目1: On fibred coarse embedding of box type spaces
報告人: 王顯金教授
講座時間:14:40
講座人簡介:
王顯金,重慶大學博士生導師,2008年畢業于復旦大學,獲得博士學位。主要研究泛函分析、非交換幾何方面問題,目前主持國家自然科學基金面上項目一項。在Adv. Math.,J. Funct. Anal.,Israel J. Math.,Bull. Lond. Math. Soc.等雜志發表多篇文章。
講座簡介:
In this talk, we introduce a new concept almost fibred coarse embeddability for metric spaces which is a generalization of fibred coarse embeddability given by X. Chen, Q. Wang and G. Yu. Then we show that the sofic approximation of a finitely generated discrete group is almost fibred coarse embeddable into some uniformly convex Banach space if and only if the group admits a proper affine isometric action on some uniformly convex Banach space.
報告題目2:Some theoretical and applied research on the completeness of generalized eigenvectors of unbounded Hamiltonian operators.
報告人: 侯國林教授
講座時間:16:00
講座人簡介:
侯國林,內蒙古大學 教授,博導。主要側重于探討源于實際問題的線性算子及分塊算子矩陣的譜理論,特別是非自伴算子,如: 無界Hamilton算子,并注重相關理論研究在工程力學等實際問題中的應用。主持在研1項國家自然科學基金項目,主持完成1項國家自然科學基金項目,連續主持3項內蒙古自然科學基金項目,并入選2015年度內蒙古自治區高等學校青年科技英才計劃。2017年獲內蒙古自治區青年科技獎,同年獲內蒙古自治區優秀科技工作者稱號。以第一作者或通訊作者在Journal of Computational and Applied Mathematics,Applied Mathematical Modelling,Linear Algebra and its Applications,Applied Mathematics and Computation,The European Physical Journal Plus,Acta Mathematica Sinica (English Series),Science China Physics-Mechanics & Astronomy,Applied Mathematics and Mechanics (English Edition),Chinese Physics B,Communications in Theoretical Physics,《中國科學:數學》,《數學學報》,《系統科學與數學》,《力學學報》,《固體力學學報》等數學、物理和力學方面的期刊上發表學術論文。
講座簡介:
The unbounded Hamiltonian operators are a kind of non-selfadjoint operator matrices, which have important applications in the field of continuum mechanics, infinite dimensional linear systems, and optimal control and so on. In order to solve applied mechanics problems rationally, Prof. Wanxie Zhong proposed a new systematical methodology of theory of elasticity (also called the symplectic elasticity approach). The symplectic approach provides a new idea for the development of applied mathematics in China. Its essence is the method of separation of variables based on Hamiltonian systems, and the corresponding mathematical basis is the completeness of the generalized eigenvector system of unbounded Hamiltonian operators. In this talk, we briefly introduces the results on the completeness of the generalized eigenvectors of unbounded Hamiltonian operators from both the theoretical aspect and mechanical application.