棋牌游戏下载-凯特棋牌手机版

當(dāng)前位置: > 學(xué)術(shù)報(bào)告 > 理科 > 正文

理科

孤子方程和黎曼希爾伯特方法

發(fā)布時(shí)間:2015-06-23 瀏覽:

講座題目:孤子方程和黎曼希爾伯特方法

講座人:Spyridon Kamvissis 教授

講座時(shí)間:09:30

講座日期:2015-6-23

地點(diǎn):長(zhǎng)安校區(qū) 文津樓三段612室

主辦單位:計(jì)算機(jī)科學(xué)學(xué)院,計(jì)算智能團(tuán)隊(duì)

講座內(nèi)容:The asymptotic analysis of so-called completely integrable PDEs is often reducible to the asymptotic analysis of Riemann-Hilbert matrixfactorization problems in the complex plane or a Riemann surface. This is achieved through a deformation method, initiated by Its, and madesystematic and rigorous by Deift and Zhou. Although it is often known as the nonlinear steepest descent method,it is only fairly recently that the term "steepest descent" has been justified, properly speaking steepest descent contours have been constructed, and the method has achieved it full power. In my talk I will illustrate this asymptotic method by considering the case of the semiclassical focusing NLS problem. I will explain how the nonlinear steepest descent method gives rise to a maxi-min variational problem for Green potentials with external field in an infinite sheeted Riemann surface and I will describe results on existence and regularity of solutions to this variational problem. The solutions are the steepest descent contours (S-curves; trajectories of quadratic differentials) together with their equilibrium measures.

全讯网网址| 桐城太阳城招聘| 大发888棋牌下载| 百家乐摇色子网站| 2016虎和蛇合作做生意| MG百家乐官网大转轮| 百家乐官网游戏研发| 大发888游戏代充值| 太阳城真人娱乐城| 大发888娱乐城范本| 百家乐娱乐平台真钱游戏| 百家乐做庄家必赢诀窍| 百家乐电子作弊器| 百家乐2珠路投注法| 马牌百家乐现金网| 百家乐必胜法hk| 百家乐如何必胜| 百家乐真人娱乐城陈小春| 澳门百家乐海星王娱乐城| 百家乐最好的平台是哪个| 百家乐赔率计算| 百家乐官网看炉子的方法| 最好的百家乐官网投注| 百家乐官网干洗店| 百家乐官网百博| 澳门百家乐官网游戏官网| 属羊的和属猪的做生意| 电脑百家乐官网玩| 澳门百家乐官网游戏玩法| 澳门百家乐打法精华| 百家乐大西洋| 大发888好么| 比如县| 网络百家乐官网公式打法| 陵川县| 单机百家乐官网在线小游戏| 百家乐官网庄闲赢负表| 玩百家乐官网的高手| E世博百家乐官网的玩法技巧和规则| 太阳百家乐官网代理| 洛克百家乐的玩法技巧和规则|