棋牌游戏下载-凯特棋牌手机版

當(dāng)前位置: > 學(xué)術(shù)報(bào)告 > 理科 > 正文

理科

孤子方程和黎曼希爾伯特方法

發(fā)布時(shí)間:2015-06-23 瀏覽:

講座題目:孤子方程和黎曼希爾伯特方法

講座人:Spyridon Kamvissis 教授

講座時(shí)間:09:30

講座日期:2015-6-23

地點(diǎn):長(zhǎng)安校區(qū) 文津樓三段612室

主辦單位:計(jì)算機(jī)科學(xué)學(xué)院,計(jì)算智能團(tuán)隊(duì)

講座內(nèi)容:The asymptotic analysis of so-called completely integrable PDEs is often reducible to the asymptotic analysis of Riemann-Hilbert matrixfactorization problems in the complex plane or a Riemann surface. This is achieved through a deformation method, initiated by Its, and madesystematic and rigorous by Deift and Zhou. Although it is often known as the nonlinear steepest descent method,it is only fairly recently that the term "steepest descent" has been justified, properly speaking steepest descent contours have been constructed, and the method has achieved it full power. In my talk I will illustrate this asymptotic method by considering the case of the semiclassical focusing NLS problem. I will explain how the nonlinear steepest descent method gives rise to a maxi-min variational problem for Green potentials with external field in an infinite sheeted Riemann surface and I will describe results on existence and regularity of solutions to this variational problem. The solutions are the steepest descent contours (S-curves; trajectories of quadratic differentials) together with their equilibrium measures.

百家乐筹码托盘| 百家乐庄闲统计数| 百乐门| 百家乐官网一拖三| 网上百家乐如何打水| 大发888城| 游戏百家乐官网庄闲| 百家乐官网视频麻将游戏| 澳门百家乐网址多少| 大发888真钱游戏平台| 百家乐官网注册赠分| 百家乐群boaicai| 金盛国际| 金樽百家乐官网的玩法技巧和规则| 美女百家乐的玩法技巧和规则| 足球网络投注| 百家乐的必赢术| 大发888娱乐场下载 df888ylc3403 | 鼎丰娱乐城开户| 黄金城百家乐官网下载| 真人百家乐蓝盾| 澳门百家乐官网娱乐注册| 百家乐赌博论坛在线| 百家乐官网游戏发展| 百家乐换房| 百家乐官网赌缆十三式| 澳门百家乐必赢看| 百家乐视频游戏冲值| 余干县| 威尼斯人娱乐城 104| 网上百家乐官网赌城| tt娱乐城怎么样| 百家乐群b28博你| 百家乐官网真钱娱乐| 威尼斯人娱乐城活动lm0| 电脑打百家乐官网怎么赢| 大发888在线赌场网站| 大发888官网 ylc8| 路单百家乐官网的玩法技巧和规则 | 葡京百家乐注码| 现金百家乐官网|